Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 57(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31554674

RESUMO

Infections with DNA viruses are frequent causes of morbidity and mortality in transplant recipients. This study describes the analytical and clinical performance characteristics of the Arc Bio Galileo Pathogen Solution, an all-inclusive metagenomic next-generation sequencing (mNGS) reagent and bioinformatics pipeline that allows the simultaneous quantitation of 10 transplant-related double-stranded DNA (dsDNA) viruses (adenovirus [ADV], BK virus [BKV], cytomegalovirus [CMV], Epstein-Barr virus [EBV], human herpesvirus 6A [HHV-6A], HHV-6B, herpes simplex virus 1 [HSV-1], HSV-2, JC virus [JCV], and varicella-zoster virus [VZV]). The mNGS 95% limit of detection ranged from 14 copies/ml (HHV-6) to 191 copies/ml (BKV), and the lower limit of quantitation ranged from 442 international units (IU)/ml (EBV) to 661 copies/ml (VZV). An evaluation of 50 residual plasma samples with at least one DNA virus detected in prior clinical testing showed a total percent agreement of mNGS and quantitative PCR (qPCR) of 89.2% (306/343), with a κ statistic of 0.725. The positive percent agreement was 84.9% (73/86), and the negative percent agreement was 90.7% (233/257). Furthermore, mNGS detected seven subsequently confirmed coinfections that were not initially requested by qPCR. Passing-Bablok regression revealed a regression line of y = 0.953x + 0.075 (95% confidence interval [CI] of the slope, 0.883 to 1.011; intercept, -0.100 to 0.299), and Bland-Altman analysis (mNGS - qPCR) showed a slight positive bias (0.28 log10 concentration; 95% limits of agreement, -0.62 to 1.18). In conclusion, the mNGS-based Galileo pipeline demonstrates analytical and clinical performance comparable to that of qPCR for transplant-related DNA viruses.


Assuntos
Infecções por Vírus de DNA/diagnóstico , Vírus de DNA/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Técnicas de Diagnóstico Molecular/métodos , Transplante/efeitos adversos , Biologia Computacional/métodos , Vírus de DNA/classificação , Vírus de DNA/genética , Humanos , Sensibilidade e Especificidade
2.
Sex Dev ; 12(6): 308-319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278451

RESUMO

Vertebrate sexual fate can be established by environmental cues (e.g., temperature-dependent sex determination, TSD) or by genetic content (genotypic sex determination, GSD). While methylation is implicated in TSD, the influence of broader epigenetic processes in sexual development remains obscure. Here, we investigated for the first time the embryonic gonadal expression of the genome-wide epigenetic machinery in turtles, including genes and noncoding RNAs (ncRNAs) involved in DNA/histone acetylation, methylation, ubiquitination, phosphorylation, and RNAi. This machinery was active and differentially thermosensitive in TSD versus GSD (ZZ/ZW) turtles. Methylation and histone acetylation genes responded the strongest. The results suggest these working hypotheses: (i) TSD might be mediated by epigenetically controlled hormonal pathways (via acetylation, methylation, and ncRNAs), or by (ii) hormonally controlled epigenetic processes, and (iii) key epigenetic events prior to the canonical thermosensitive period may explain differences between TSD and GSD. Novel epigenetic candidate regulators other than methylation were identified, including previously unknown ncRNAs that could potentially mediate gonadogenesis. These findings illuminate the molecular ecology of reptilian sex determination and permitted hypothesis building to help guide future functional studies on the epigenetic transduction of external cues in TSD versus GSD systems.

3.
J Hered ; 108(7): 720-730, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29036698

RESUMO

Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-linked in selected reptiles/vertebrates and the same genes located in autosomes in other amniotes. We report for the first time the faster evolution of Z-linked genes in a turtle (the Chinese softshell turtle Pelodiscus sinensis) relative to autosomal orthologs in other taxa, including turtles with temperature-dependent sex determination (TSD). This faster rate was absent in its close relative, the spiny softshell turtle (Apalone spinifera), thus revealing important lineage effects, and was only surpassed by mammalian-X linked genes. In contrast, we found slower evolution of X-linked genes in the musk turtle Staurotypus triporcatus (XX/XY) and homologous Z-linked chicken genes. TSD lineages displayed overall faster sequence evolution than taxa with genotypic sex determination (GSD), ruling out global effects of GSD on molecular evolution beyond those by sex-linkage. Notably, results revealed a putative selective sweep around two turtle genes involved in vertebrate gonadogenesis (Pelodiscus-Z-linked Nf2 and Chrysemys-autosomal Tspan7). Our observations reveal important evolutionary changes at the gene level mediated by chromosomal context in turtles despite their low overall evolutionary rate and illuminate sex chromosome evolution by empirically testing expectations from theoretical models. Genome-wide analyses are warranted to test the generality and prevalence of the observed patterns.


Assuntos
Evolução Molecular , Cromossomos Sexuais/genética , Tartarugas/genética , Animais , Mamíferos/genética , Modelos Genéticos , Filogenia
4.
Epigenetics Chromatin ; 10: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533820

RESUMO

BACKGROUND: DNA methylation alters gene expression but not DNA sequence and mediates some cases of phenotypic plasticity. Temperature-dependent sex determination (TSD) epitomizes phenotypic plasticity where environmental temperature drives embryonic sexual fate, as occurs commonly in turtles. Importantly, the temperature-specific transcription of two genes underlying gonadal differentiation is known to be induced by differential methylation in TSD fish, turtle and alligator. Yet, how extensive is the link between DNA methylation and TSD remains unclear. Here we test for broad differences in genome-wide DNA methylation between male and female hatchling gonads of the TSD painted turtle Chrysemys picta using methyl DNA immunoprecipitation sequencing, to identify differentially methylated candidates for future study. We also examine the genome-wide nCpG distribution (which affects DNA methylation) in painted turtles and test for historic methylation in genes regulating vertebrate gonadogenesis. RESULTS: Turtle global methylation was consistent with other vertebrates (57% of the genome, 78% of all CpG dinucleotides). Numerous genes predicted to regulate turtle gonadogenesis exhibited sex-specific methylation and were proximal to methylated repeats. nCpG distribution predicted actual turtle DNA methylation and was bimodal in gene promoters (as other vertebrates) and introns (unlike other vertebrates). Differentially methylated genes, including regulators of sexual development, had lower nCpG content indicative of higher historic methylation. CONCLUSIONS: Ours is the first evidence suggesting that sexually dimorphic DNA methylation is pervasive in turtle gonads (perhaps mediated by repeat methylation) and that it targets numerous regulators of gonadal development, consistent with the hypothesis that it may regulate thermosensitive transcription in TSD vertebrates. However, further research during embryogenesis will help test this hypothesis and the alternative that instead, most differential methylation observed in hatchlings is the by-product of sexual differentiation and not its cause.


Assuntos
Metilação de DNA/genética , Gônadas/crescimento & desenvolvimento , Processos de Determinação Sexual , Tartarugas/genética , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Desenvolvimento Sexual , Temperatura , Tartarugas/crescimento & desenvolvimento
5.
PLoS One ; 12(3): e0172044, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28296881

RESUMO

Vertebrate sexual fate is decided primarily by the individual's genotype (GSD), by the environmental temperature during development (TSD), or both. Turtles exhibit TSD and GSD, making them ideal to study the evolution of sex determination. Here we analyze temperature-specific gonadal transcriptomes (RNA-sequencing validated by qPCR) of painted turtles (Chrysemys picta TSD) before and during the thermosensitive period, and at equivalent stages in soft-shell turtles (Apalone spinifera-GSD), to test whether TSD's and GSD's transcriptional circuitry is identical but deployed differently between mechanisms. Our data show that most elements of the mammalian urogenital network are active during turtle gonadogenesis, but their transcription is generally more thermoresponsive in TSD than GSD, and concordant with their sex-specific function in mammals [e.g., upregulation of Amh, Ar, Esr1, Fog2, Gata4, Igf1r, Insr, and Lhx9 at male-producing temperature, and of ß-catenin, Foxl2, Aromatase (Cyp19a1), Fst, Nf-kb, Crabp2 at female-producing temperature in Chrysemys]. Notably, antagonistic elements in gonadogenesis (e.g., ß-catenin and Insr) were thermosensitive only in TSD early-embryos. Cirbp showed warm-temperature upregulation in both turtles disputing its purported key TSD role. Genes that may convert thermal inputs into sex-specific development (e.g., signaling and hormonal pathways, RNA-binding and heat-shock) were differentially regulated. Jak-Stat, Nf-κB, retinoic-acid, Wnt, and Mapk-signaling (not Akt and Ras-signaling) potentially mediate TSD thermosensitivity. Numerous species-specific ncRNAs (including Xist) were differentially-expressed, mostly upregulated at colder temperatures, as were unannotated loci that constitute novel TSD candidates. Cirbp showed warm-temperature upregulation in both turtles. Consistent transcription between turtles and alligator revealed putatively-critical reptilian TSD elements for male (Sf1, Amh, Amhr2) and female (Crabp2 and Hspb1) gonadogenesis. In conclusion, while preliminary, our data helps illuminate the regulation and evolution of vertebrate sex determination, and contribute genomic resources to guide further research into this fundamental biological process.


Assuntos
Gônadas/crescimento & desenvolvimento , Processos de Determinação Sexual , Temperatura , Transcriptoma , Tartarugas/fisiologia , Animais , Feminino , Genótipo , Masculino , Tartarugas/embriologia , Tartarugas/genética
6.
Genome Biol Evol ; 7(7): 2038-50, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26108489

RESUMO

Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta-CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms.


Assuntos
Evolução Molecular , Genoma , Tartarugas/genética , Animais , Aves/genética , Células Cultivadas , Bandeamento Cromossômico , Cromossomos Artificiais Bacterianos , Humanos , Cariotipagem , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Sintenia
7.
BMC Genomics ; 15: 75, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24472515

RESUMO

BACKGROUND: In social groups, dominant individuals may socially inhibit reproduction of subordinates using aggressive interactions or, in the case of highly eusocial insects, pheromonal communication. It has been hypothesized these two modes of reproductive inhibition utilize conserved pathways. Here, we use a comparative framework to investigate the chemical and genomic underpinnings of reproductive dominance in the primitively eusocial wasp Polistes metricus. Our goals were to first characterize transcriptomic and chemical correlates of reproductive dominance and second, to test whether dominance-associated mechanisms in paper wasps overlapped with aggression or pheromone-related gene expression patterns in other species. To explore whether conserved molecular pathways relate to dominance, we compared wasp transcriptomic data to previous studies of gene expression associated with pheromonal communication and queen-worker differences in honey bees, and aggressive behavior in bees, Drosophila, and mice. RESULTS: By examining dominant and subordinate females from queen and worker castes in early and late season colonies, we found that cuticular hydrocarbon profiles and genome-wide patterns of brain gene expression were primarily associated with season/social environment rather than dominance status. In contrast, gene expression patterns in the ovaries were associated primarily with caste and ovary activation. Comparative analyses suggest genes identified as differentially expressed in wasp brains are not related to queen pheromonal communication or caste in bees, but were significantly more likely to be associated with aggression in other insects (bees, flies), and even a mammal (mice). CONCLUSIONS: This study provides the first comprehensive chemical and molecular analysis of reproductive dominance in paper wasps. We found little evidence for a chemical basis for reproductive dominance in P. metricus, and our transcriptomic analyses suggest that different pathways regulate dominance in paper wasps and pheromone response in bees. Furthermore, there was a substantial impact of season/social environment on gene expression patterns, indicating the important role of external cues in shaping the molecular processes regulating behavior. Interestingly, genes associated with dominance in wasps were also associated with aggressive behavior in bees, solitary insects and mammals. Thus, genes involved in social regulation of reproduction in Polistes may have conserved functions associated with aggression in insects and other taxa.


Assuntos
Genoma , Vespas/genética , Comunicação Animal , Animais , Abelhas/genética , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feromônios/química , Feromônios/metabolismo , Reprodução/genética , Comportamento Social
8.
Genome Biol ; 14(3): R28, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23537068

RESUMO

BACKGROUND: We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. RESULTS: Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. CONCLUSIONS: Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.


Assuntos
Adaptação Fisiológica/genética , Genoma/genética , Modelos Genéticos , Filogenia , Tartarugas/genética , Animais , Composição de Bases/genética , Evolução Molecular , Feminino , Congelamento , Humanos , Hipóxia/genética , Hipóxia/fisiopatologia , Sistema Imunitário/metabolismo , Isocoros/genética , Funções Verossimilhança , Longevidade/genética , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Pseudogenes/genética , Padrões de Referência , Sequências Repetitivas de Ácido Nucleico/genética , Seleção Genética , Processos de Determinação Sexual , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...